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9 Scientific models and 
mathematical equations

In science, a graph shows a relationship between quantities in the real world. Some 
graphs are produced by collecting and plotting experimental data. However, some graphs 
are representations of how we might imagine the world to be, based on certain sets of 
assumptions or ‘scientific models’. Underlying the behaviour of these models are the 
mathematical equations that breathe life into our imagined worlds.

9.1 Equations, formulae and expressions
Before going further, it is useful to clarify the meaning of a number of terms about which 
there is sometimes confusion. Central to this chapter will be a discussion of the manipulation 
and graphical representation of equations (also referred to as algebraic equations). An 
equation is a mathematical statement that indicates the equality of the expressions to the left 
and right of the equals ( ) sign. Figure 9.1 shows some examples of equations.

All of these equations contain variables but they 
differ in their nature. In equations (a), (b) and (c) 
the variables are abstract, but in equations (d), (e) 
and (f ) the variables represent physical quantities. 
An equation that shows the relationship between 
physical quantities is called a formula. So, every 
formula is an equation, though not every equation 
is a formula.

Note that although equation (d) looks different to 
equation (a) because it uses words (density, mass and 
volume) rather than symbols (x and y), this is not 
what makes it a formula. Equations (e) and (f ) both 
represent the same formula for calculating kinetic 
energy. What makes both of them formulae is that the variables, whether expressed as words or 
as symbols, relate to physical quantities. (The advantages and disadvantages of using words or 
symbols are discussed in Section 9.5 The real-world meaning of a formula on page 93.)

Key words: equation, algebraic equation, formula, expression, variable, constant, 
coefficient, brackets, order of operations, subject of a formula, proportional, directly 
proportional, constant of proportionality, linear relationship, linear equation, inversely 
proportional, exponential relationship, inverse square relationship, line graph, rate, 
intercept, gradient, tangent, area under the line (on a graph).

Figure 9.1 Examples of equations

(a) 1
3

x
y

(b) y mx c

(c) 2
2 5 3 0x x

(d)
mass

density
volume

(e) 2
kinetic energy ½ mass velocity

(f) 2
k  ½E mv
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Pupils should also be aware that the terms formula and equation have additional meanings in 
chemistry: a chemical formula (e.g. H2O) is a symbolic way of showing the relative numbers 
of atoms in a substance, while a chemical equation is a symbolic representation of the 
rearrangement of those atoms that occurs in a chemical reaction. The idea of ‘balance’ applies 
to both types of equation: in an algebraic equation the values on each side are equal, and in a 
chemical equation the numbers of atoms on each side are equal.

An expression is a combination of numbers and variables that may be evaluated – 
expressions do not contain the equals ( ) sign. (Note that ‘evaluating an expression’ means 
finding its numerical value – a very different meaning to ‘evaluating a science investigation’.) 
So, the equations listed above are not themselves expressions, but they do contain expressions. 
Examples of expressions are shown in Figure 9.2.

Notice that, in an algebraic expression such as 5x, the convention is that there is no 
multiplication sign between the ‘5’ and the ‘x’, even though this means ‘5 multiplied by x’. 
However, for a word expression, the multiplication sign is included for clarity, for example 
½  mass  velocity2.

When such an expression is expressed symbolically, the multiplication signs are omitted and 
it is written as ½mv2 (writing ½  m  v2 could be confusing as  could be mistaken for x). 
Since these symbols do not have a space between them, all physical quantities are represented 
by just a single letter (e.g. m for mass, v for velocity, and so on). Additional information 
about a variable that needs to be included can be indicated using a subscript or superscript 
(e.g. Ek). Note that this contrasts with units, which often have more than one letter (e.g. cm 
or kg) and are always written with spaces in between each unit.

Similarly, using the division sign ( ) explicitly is not the only way to represent division. The 
following expressions are the same:

mass volume mass / volume
mass

volume

The third way of representing division in an expression is generally preferable because it 
makes the relationship clearer to see. This is particularly the case when there are more than 
two values or variables in the expression.

9.2 Variables, constants and coefficients
Expressions may include letters that represent variables, constants and coefficients, and it is 
also useful to clarify the meaning of these words, particularly as they are used differently in 
mathematics and science.

An example of a variable is represented by the letter x in this equation:

1
3
x

y

Figure 9.2 Examples of expressions
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It is a variable because it can take on a range of values. In this example, as the value of x 
varies, y also varies, and so y is a variable too.

In science, the term ‘variable’ is also used in this sense, being represented by a letter or 
word(s) in an algebraic equation. For example, in the following equation, mass and volume 
are both variables and could each take on a range of values:

massdensity
volume

These values would give a range of values for density, and so this too is a variable. However, 
the term ‘variable’ is used in a broader sense in science. It can be used to refer to any factor 
that could be varied in a scientific investigation, whether or not it forms part of an algebraic 
equation. Such equations represent only quantitative variables, and often variables are 
qualitative (categorical). Quantitative variables (continuous or discrete) may be identified at 
the start of an investigation, to find out whether there is a relationship that can be expressed 
as an algebraic equation; even if none is found, they are still referred to as ‘variables’.

Note that in published texts the letters that represent variables are shown in italics, but 
not the letters that represent units. So, mass may be represented by the letter m, while the 
abbreviation for metre is m. This distinction is not made when writing by hand.

An example of the use of a constant in mathematics is illustrated in the equation:

y   mx  c

This is the general equation of a straight line, where m and c represent constants (m is the 
gradient of the line and c is the intercept). Substituting different numerical values for m and 
c gives different straight lines; for example, y 2x 1 represents one particular straight line, 
and y 3x 2 represents another one.

In a scientific investigation, we may refer to ‘keeping a variable constant’ (i.e. the control 
variable). For example, the current through an electrical resistor depends on two variables – 
its resistance and the voltage applied across it. In an investigation, we could look at the effect 
on the current of changing the resistance while keeping the voltage constant, or changing the 
voltage while keeping the resistance constant.

The word ‘constant’ is also used in science to refer to those physical quantities that really are 
‘constant’, and where they always have the same value whenever they are used. Examples of 
such physical constants include the speed of light in a vacuum (about 3  108 m s−1) and the 
Avogadro constant (about 6.02  1023 mol−1), Note that although these are constants, this does 
not mean they are just numbers – they are values that have units.

The word coefficient can easily be confused with constant. In the expression 3x2, the 
coefficient of x2 is ‘3’, and in the expression 5x, the coefficient of x is ‘5’. The term does not 
just apply to numerical values; so, for example, in the expression ½mv2, as well as saying that 
½ is the coefficient of mv2, we could say that ½m is the coefficient of v2. In science, however, 
the word is also often applied to a value that is constant for a particular material under 
certain conditions but that is different for different materials (e.g. the coefficient of expansion 
or the coefficient of thermal conductivity).
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9.3 Operations and symbols
An expression may contain symbols that represent operations. Two common operations are 
addition and subtraction, and these are represented by the familiar plus ( ) and minus ( ) 
signs. Multiplication and division are also common operations, though the signs that can be 
used to represent them (  and ) are often not used explicitly (see Section 9.1 Equations, 
formulae and expressions on page 87).

A subtle point, but one that becomes much more important for post-16 science, is that the 
plus ( ) and minus ( ) signs are actually used in two distinct ways. For example, take these 
two expressions:

5 3   3

In the first of these, the minus symbol is acting as an operator – it is telling us to subtract 
the value 3 from the value 5. In the second of these, it is telling us that this is a negative 
value. The same applies to the ‘plus’ sign, which has different meanings in the following 
two expressions.

5 3   3

Note that while the ‘minus’ symbol is always used to indicate a negative value, often we do 
not explicitly use the ‘plus’ symbol to indicate a positive value, and simply write ‘3’.

This distinction is essential in understanding expressions that involve the addition and 
subtraction of positive and negative values, for example:

( 6) ( 4) ( 2)

One area of 11–16 science where pupils may encounter such expressions is the use of vectors 
to describe and analyse motion (see Sections 10.5–10.8).

In an equation, the equals ( ) sign indicates that the expressions on each side are equal. 
There are a number of other useful symbols that are used to compare expressions, and these 
are shown in Figure 9.3.

The first three symbols ( , >, <) are clear-cut in their 
meaning and are probably the ones most commonly 
encountered.

The next two symbols (≥, ≤) can be useful in defining 
class intervals (see Section 6.4 Displaying larger sets 
of values on page 53). For example, the phrase 
‘those pupils whose height is 150 cm or above but 
less than 160 cm’ can be expressed more simply as 
150 cm ≤ height ≤ 160 cm.

An approximate value can be indicated by using the 
symbol ‘~’; for example, approximately 3 g can be 
written as ~3 g. The symbol ‘ ’ is a combination of ‘

’ and ‘~’ so, instead of writing ‘mass ~3 g’, it is simpler to write ‘mass   3 g’.

The last two symbols ( , ) are not common in 11–16 science. One example of their 
use might be in a situation where one is handling an algebraic equation that includes an 
expression such as mA mB, where these represent the masses of two objects, A and B. If the 
mass of A is very much bigger than the mass of B then the expression might be simplified, by 

Figure 9.3 Examples of symbols used 

to compare expressions

y = x ‘y equals x’ or ‘y is equal to x’

y > x ‘y is greater than x’

y < x ‘y is less than x’

y ≥ x ‘y is greater than or equal to x’

y ≤ x ‘y is less than or equal to x’

y ≈ x ‘y is approximately equal to x’

y   x ‘y is much greater than x’

y   x ‘y is much less than x’
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assuming that the mass of B can be ignored and that the total mass can be taken as just the 
mass of A. This can be represented as:

since mA   mB , then mA mB    mA

9.4 Calculations using formulae: order of operations
Many of the formulae that pupils encounter in 11–16 science involve just one operation. 
For example, density can be calculated by dividing mass by volume – a single operation. In 
formulae where there is more than one operation, it is essential that they are carried out in the 
correct order. 

Here is a simple example to illustrate this:

4 2  3

A different value is obtained depending on 
whether the addition or multiplication is done 
first, as shown in Figure 9.4.

It might seem common sense that the first of these is 
correct since the operations are done in order from 
left to right, and the result should be 18. Indeed, if 
this series of numbers and symbols were entered into most calculators, the result given would 
be in fact be 18. However, this is not the convention that has been adopted in mathematics, 
in which multiplication takes precedence over addition. The correct value is therefore 10.

Pupils need to be aware of how to handle the order of operations in order to be able to make 
calculations and to rearrange formulae. The explanations for these will be given and then 
summarised at the end of this section.

In an expression involving only 
addition and subtraction, the operations 
are carried out in order from left to 
right (Figure 9.5a). A different order, 
for example, from right to left, may 
give a different (and incorrect) result 
(Figure 9.5b).

In an expression involving only multiplication and division (using  and  signs), these 
operations are also carried out in order from left to right (Figure 9.6a). As before, a different 
order may give an incorrect result (Figure 9.6b). However, this expression could be written 
more clearly and less ambiguously by avoiding the use of the  sign (Figure 9.6c). The top 
and bottom expressions are evaluated first before the final division.

Figure 9.4 Which order is correct?

(a) Addition first

4 + 2 × 3 

6 × 3 

18

(b) Multiplication first

4 + 2 × 3 

4 + 6 

10

Figure 9.5 Addition and subtraction only

(a) Left to right (correct)

4 + 3 − 2 − 1 

7 − 2 − 1 

5 − 1 

4

(b) Right to left (incorrect)

4 + 3 − 2 − 1 

4 + 3 − 1 

4 + 2 

6

Figure 9.6 Multiplication and division only

(a) Left to right (correct)

3 × 4 ÷ 2 ÷ 2 

12 ÷ 2 ÷ 2 

6 ÷ 2 

3

(b) Right to left (incorrect)

3 × 4 ÷ 2 ÷ 2 

3 × 4 ÷ 1 

3 × 4 

12

(c) Clearer (and correct)

3 4

2 2

12

4

3
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If an expression contains a combination of these  
operations then multiplication and division take 
precedence over addition and subtraction 
(Figure 9.7a). If, however, a calculation requires 
that an addition or subtraction should take 
precedence then this can be done using 
brackets. (Figure 9.7b). Evaluating expressions in brackets takes precedence over all 
other operations.

It would be possible to add brackets to 10 2  3 giving the expression 10 (2  3), and it 
would still give a value of 4. The brackets, though, are unnecessary since multiplication 
already has precedence. Even though they are not needed, it would not be incorrect to use the 
brackets here, so it may be better to include brackets when in doubt or for additional clarity.

Pupils should also be able to handle calculations  
involving indices (i.e. those that include 
expressions of the form xn in which x is raised 
to the power of n). Indices take precedence over 
all of the operations discussed so far (addition, 
subtraction, multiplication, division) except 
brackets. Figure 9.8a illustrates the precedence 
of an index over a multiplication, while Figure 9.8b shows how brackets take precedence over 
an index.

To summarise these ideas, a rather contrived example of a calculation is shown in Figure 9.9 
to illustrate the order of operations.

This convention is summarised in the widely used mnemonic BIDMAS (Brackets, Indices, 
Division/Multiplication, Addition/Subtraction). An alternative form of the mnemonic is 
BODMAS (where O represents Order or ‘to the power Of ’).

For simplicity, all of these examples have involved only numbers but the same conventions 
about the order of operations apply to the manipulation of algebraic equations. Furthermore, 
in scientific formulae the values have units; making sure that the handling of the units makes 
sense provides an additional check on the correct sequence of operations (e.g. one cannot add 
unlike units).

The use of calculators needs care in making sure that the operations are done in the correct 
order. It is often safer to write down intermediate values – indeed, in scientific calculations, 
these intermediate values are often useful to calculate in any case as they have a real-world 
meaning.

Figure 9.7 Handling brackets

(a) With no brackets

10 − 2 × 3 

10 − 6 

4

(b) With brackets

(10 − 2) × 3 

8 × 3 

24

Figure 9.8 Handling indices

(a) Index takes  

precedence

2 × 3
2 

2 × 9 

18

(b) Brackets take  

precedence

(2 × 3)
2
 

6
2
 

36

Figure 9.9 Order of operations

The original expression: 4 + 2 × (5 − 2)
2

Expressions inside brackets are evaluated first, to give: 4 + 2 × 3
2

Next indices are evaluated, to give: 4 + 2 × 9

Then multiplication and division, to give: 4 + 18

Finally, addition and subtraction, to give: 22
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9.5 The real-world meaning of a formula
It is helpful to think of a formula not just as a mathematical equation but as something that 
‘tells a story’ about the real world. For example, take the formula that defines speed:

distancespeed
time

As well being able to substitute values and to calculate a result, pupils should be able to 
interpret what this formula is saying and to check that this makes sense. The formula shows 
that speed is directly proportional to distance: so, in real-world terms, the greater the distance 
that someone walks in a certain time, the greater their speed. It also shows that speed is 
inversely proportional to time: so, the greater the time that someone walks a certain distance, 
the lower their speed. Pupils should be able to see that these real-world interpretations of the 
formula make sense.

The formula above defines the relationship between three variables. Knowing the values 
of any two of the variables means that the third variable can be calculated. The formula 
allows speed to be calculated but rearranging it gives formulae that allow distance and time 
to be calculated (how to rearrange formulae will be discussed in subsequent sections of 
this chapter):

distance   speed  time

distancetime
speed

Again, in these formulae, pupils should be able to identify directly proportional and inversely 
proportional relationships, and to relate the formulae to real-world interpretations.

There are many formulae used in 11–16 science that involve three variables that are related in 
this way, i.e. through direct and inverse proportion. Other examples include:

massdensity
volume

mass of substancechemical amount (in moles)
molar mass

force exerted on spring   spring constant  extension

Note that the underlying form of all these formulae is the same. Although the last formula 
looks different from the others (the right-hand side shows two variables multiplied 
together), the first two formulae could also each be rearranged to show two variables 
multiplied together. Each of the formulae here, however, is shown in the way it is most 
commonly written.

Note also that some formulae represent definitions whereas others represent empirical 
relationships. For example, the first formula is a definition: it represents the way that density is 
defined. In a definition, the relationship between the variables is exact. The last formula, by 
contrast, represents an empirical relationship (Hooke’s Law), which is an approximation to the 
way that real springs behave.

When pupils first start to use scientific formulae, it is generally better to express these using 
words rather than symbols for the variables, since this helps to emphasise the real-world 
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meaning. As they get older, it is appropriate that they also become familiar with symbolic 
formulae. These have a number of advantages. They are shorter to write down, making them 
easier to manipulate and rearrange. The symbolic form may also be easier to remember: in 
the two versions for kinetic energy below, the symbolic one is visually more recognisable, as 
well as its sound (‘a-half-em-vee-squared’) being more memorable.

kinetic energy   ½  mass  speed2 Ek   ½mv2

The following sections discuss the techniques that can be used to rearrange formulae. Pupils 
need to be able to rearrange a formula if the quantity that they are trying to calculate is not 
‘on its own’ on the left-hand side. The discussion starts with the simplest kind of formula, 
involving only addition and subtraction, before moving on to those involving multiplication 
and division.

9.6 Rearranging formulae involving addition and subtraction
Suppose that in a class of pupils there are 13 boys and 15 girls. It is not difficult to work out 
that the total number of pupils in the class is 28. More formally, one could represent this as a 
‘formula’ for calculating the number of pupils in a class (Figure 9.10).

Now suppose that, in a different class, we want to work out the number of girls knowing 
that the total number of pupils is 30 and the number of boys is 14. Again, it is not difficult 
to work out the result – there must be 16 girls – but the above formula does not give this 
directly. In order to do this, the formula needs to be rearranged so that ‘number of girls’ 
becomes the subject of the formula, i.e. it is ‘on its own’ and by convention on the left of the 
equals sign. Using our common sense about the situation, we should be able to write down a 
rearranged formula for working out the number of girls (Figure 9.11).

However, most formulae are not as easy to rearrange as this, so it is important for pupils to 
understand the general principles for rearranging formulae, in order to apply these to any 
situation. There are really just two principles – for simplicity, these will be illustrated using 
only numbers at first but they apply in exactly the same way to formulae involving variables. 
Figure 9.12 uses the example of ‘2 3 5’: the value of the expression on the left is 5 and 
that on the right is 5 – they are equal.

The first principle is that the sides of an equation can be swapped – an equation shows that 
the expression on the left is equal to the expression on the right, so it does not matter in 

Figure 9.10 A simple formula

number of pupils number of boys number of girls

13 15

28

Figure 9.11 Rearranging the formula

number of girls number of pupils number of boys

30 14

16
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which order they are written. The left and right sides are still equal if the sides are swapped 
(Figure 9.12a).

The second principle is that the left and 
right sides of an equation remain equal if 
the same operation is performed on each side. 
For example, the sides are still equal to each 
other if the same value is added to each side: 
Figure 9.12b shows that, if ‘2’ is added to 
each side, they remain equal (each has a value 
of 7). The same applies if the same value is 
subtracted from each side: if 3 is subtracted 
from each side, they are both equal to 2.

Returning to the original formula for working 
out the total number of pupils in a class, how 
could we rearrange this so that ‘number of boys’ is the subject of the formula (i.e. on the left)? 
Figure 9.13 shows how the two principles for rearranging equations can be applied to do this.

Writing out the steps like this might seem a bit laborious (though if symbols were used for 
the variables rather than words, it would be both quicker to write as well as clearer to see). 
However, manipulating equations in this way emphasises the understanding of the principles, 
which is important for equations where it may not be so straightforward. After gaining 
in confidence and understanding, some pupils might begin to take shortcuts, but it is not 
recommended that these should be taught as this can lead to misconceptions. It is better to 
teach in a way that focuses on the principles in order to develop understanding.

After rearranging a formula, it is always important to check it and to think about whether it 
makes sense (see Section 9.5 The real-world meaning of a formula on page 93).

9.7 Rearranging formulae involving multiplication and division 
Many formulae in 11–16 science involve three variables that are directly proportional or 
inversely proportional to each other. For example, the formula that defines density is:

massdensity  
volume

Suppose that you know the density and the volume of something and want to use the 
formula to calculate its mass. It needs to be rearranged so that mass is the subject of the 

formula. Rearranging such formulae is something that pupils find quite challenging. 

Figure 9.12 Principles for rearranging 

equations

(a) Swapping sides

2 + 3 = 5

the sides remain equal if the sides are swapped:

5 = 2 + 3

(b) Doing the same thing to each side

2 + 3 = 5

the sides remain equal if the same operation is 

performed on each side:

2 + 3 + 2 = 5 + 2

2 + 3 − 3 = 5 − 3

Figure 9.13 Applying the principles

The original formula:

   number of pupils = number of boys + number of girls

So that ‘number of boys’ is on the left, swap sides:

   number of boys + number of girls = number of pupils

In order to have just ‘number of boys’ on the left side, subtract ‘number of girls’ from each side:

   number of boys + number of girls − number of girls = number of pupils − number of girls

This gives:

   number of boys = number of pupils − number of girls
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Working first with just numbers may help pupils to explore and get a better sense of the 
different ways of expressing the relationship, for example:

12 2
6

 could be rearranged as 2  6   12 or 
126
2

 and so on.

Rearranging the formula for density uses the same two principles as in the previous section on 
addition and subtraction. Figure 9.14 shows how the principles of swapping sides and carrying 
out the same operation on both sides can be used to make mass the subject of the formula.

Suppose instead that we want to rearrange  
the original formula so that volume is the 
subject of the formula. This is shown in 
Figure 9.15. As always, pupils should check 
the meaning of a rearranged formula: does 
it make sense that volume is directly 
proportional to mass and inversely 
proportional to density? Would the formula 
be obviously wrong if these were reversed 
(so that density was divided by mass)? 

Again, confident pupils might take shortcuts, 
but it is recommended that teaching should 
always emphasise an understanding of the 
principles by carrying out all of the steps.

9.8 Rearranging other formulae
Most formulae in 11–16 science involve 
only addition, subtraction, multiplication 
and division. One exception is the formula 
for kinetic energy. Suppose we want to 
rearrange this to make ‘speed (v)’ the 
subject of the formula.

Ek   ½mv2

Figure 9.14 Rearranging to make mass the subject of the formula

The original formula:

   

mass
density  

volume

So that ‘mass’ is on the left, swap sides:

   

mass
density

volume

To remove volume from the left side, multiply each side by ‘volume’:

   

mass
volume volume density

volume

On the left side, ‘volume’ cancels out (since volume ÷ volume = 1), and so 

the rearranged formula becomes:

   mass = volume × density

Figure 9.15 Rearranging to make volume the 

subject of the formula

The original formula:

   

mass
density  

volume

Here, swapping sides is not a helpful first step to 

get ‘volume’ on its own on the left side. Instead, 

multiply each side by ‘volume’:

   

mass
volume density  volume

volume

On the right side, ‘volume’ cancels out (since 

volume ÷ volume = 1):

   volume × density = mass

In order to remove ‘density’ from the left side, 

divide each side by ‘density’:

   

volume density mass
 

density density

On the left side, ‘density’ cancels out (since 

density ÷ density = 1), and so the rearranged 

formula becomes:

   

mass
volume  

density
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This is a bit more difficult than the previous examples, but again illustrates the same two 
principles for rearranging equations (Figure 9.16).

Another example, this time involving reciprocals, is the formula for the total resistance of two 
resistors in parallel:

total 1 2

1 1 1
R R R

There are a number of different ways that this could be rearranged so that Rtotal is the subject, 
though they all give the same result. Figure 9.17 shows one way of doing this.

Although this example is considerably more demanding than the previous examples, it still 
uses the same two principles for rearranging equations.

Figure 9.16 Rearranging to make velocity the subject of the formula

The original formula:

   Ek = ½mv2

So that v is on the left, swap sides:

   ½mv2
 = Ek

To remove the ½, multiply both sides by 2:

   mv2
 = 2Ek

Divide both sides by m:

   

2 k2E
v

m

Taking square roots of each side gives the final formula (this is another 

example of ‘doing the same thing to both sides’):

   

k2E
v

m

Figure 9.17 Rearranging to make total resistance the subject of the formula

Original formula:

   total 1 2

1 1 1

R R R

Multiply both sides by R1R2Rtotal

   

1 2 total
1 2 total

total 1 2

1 1R R R
R R R

R R R

This simplifies to:

   R1R2 = R2Rtotal + R1Rtotal

Rearrange the expression on the right-hand side:

   R1R2 = Rtotal(R1 + R2)

Swap sides:

   Rtotal(R1 + R2) = R1R2

Divide both sides by (R1 + R2):

   

1 2
total

1 2

R R
R

R R



Chapter 9: Scientific models and mathematical equations

The Language of Mathematics in Science: A Guide for Teachers of 11–16 Science 98

9.9 Calculations without formulae
The idea that a formula tells a ‘story’ also works the other way round. It is useful to remember 
formulae, but knowing things about the way the world works means that formulae can often 
be worked out. In addition, it may not always be necessary to use a formula. This section 
gives two examples to illustrate this.

Example 1
What is the mass of 20 cm3 of aluminium (density 2.7 g/cm3)? One way of answering this 
question would be to write down the relevant formula (from memory or looking it up) and 
then substitute the values. Alternatively, it can be done by reasoning about the situation:

(1) 1 cm3 of aluminium has a mass of 2.7 g
(2) 20 cm3 of aluminium has a mass of 20  2.7 g   54 g

Step (1) is using the original information to explain what the density implies. In step (2), the 
reasoning is that 20 times the volume of aluminium will have 20 times the mass.

Example 2 (which requires more steps):
What chemical amount (in moles) of water molecules are there in 10 g of water (molar mass
18 g/mol)?

(1) 18 g of water contains 1 mol of water molecules
(2) 1 g of water contains 1/18 mol of water molecules
(3) 10 g of water contains 10/18 mol of water molecules   0.56 mol

Step (1) is using the original information to explain what the molar mass implies. In step (2), 
the reasoning is that 1/18 of the mass of water will have 1/18 of the chemical amount (in 
moles). Finally, in step (3), similar reasoning means that 10 times the mass of water has 
10 times the chemical amount.

This technique is an example of proportional reasoning. Since it involves a step in which you 
calculate the value of one variable when the other has a numerical value of 1, it is known as 
the unitary method.

9.10 Use of ‘calculation triangles’
A quite common technique for avoiding the need to rearrange formulae is the use of 
‘calculation triangles’. Many teachers dislike this method as they see it as a way of getting 
the right answer in an examination without any need for real understanding. Pupils often 
like the method for precisely the same reason, and some teachers may therefore feel under an 
obligation to use the method. The technique is generally regarded as poor practice because it 
does not encourage pupils to develop their understanding of these kinds of relationship.

An example of its use can be illustrated with the following question: What is the current 
through a resistance of 10 Ω if a potential difference of 3 V is applied across it?

If this calculation is done using equations then the first step is to write down the formula that 
relates the three variables:

potential difference   current  resistance

The next step is to rearrange this so that current is the subject of the formula:

potential differencecurrent
resistance
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Substituting the values for potential difference (3 V) and resistance (10 Ω) gives the current as 
0.3 A.

How to do this with a calculation triangle is shown in Figure 9.18. The relationship between 
potential difference (V ), current (I) and resistance (R) is represented in Figure 9.18a. 
Covering up any one of the symbols in this triangle gives the expression required to 
calculate it. For example, to calculate the value of the current, the symbol ‘I ’ is covered 
up (Figure 9.18b). Substituting the values in the expression for the remaining symbols 
(Figure 9.18c) gives the required answer.

Figure 9.18 Using ‘calculation triangles’ does not encourage understanding

(a) A calculation triangle (b) Covering up the symbol ‘I’ . . . (c) . . . gives the expression for 

calculating it

Of course, in order to use a ‘calculation triangle’, a pupil first needs to write it down with the 
three symbols in the correct positions. One of the problems with this method is that this is 
not the way that formulae are shown in scientific texts, nor the way the pupils are expected 
to remember them. So, remembering the correct calculation triangle requires at least as much 
work as remembering the formula.

Even once the triangle is written down, the use of this representation focuses more on just 
getting the right answer. As discussed in Section 9.5, pupils should always be thinking about 
the real-world meaning of a formula.

There are a variety of formulae in school science but calculation triangles have limited 
applicability and pupils may not always appreciate this. If they try to use triangles for 
equations that involve addition and subtraction, they will get incorrect results. Relying on 
their use means that pupils are not developing the skills to become fluent in rearranging 
different types of equations.

On a positive note, the visual form of a calculation triangle does emphasise that the three 
variables are related to each other, and that any of the variables can be calculated from the 
other two. A formula shows just one of these calculations. If teachers do feel pressurised into 
using them, they should be used as a complement to the understanding of the nature and 
meaning of equations rather than as a replacement.

9.11 Mathematical equations and relationships in science
Many relationships in science can be modelled by a small number of mathematical 
equations. Figures 9.19–9.24 show the most common of these, and how they can be 
represented on line graphs. Each figure shows the relevant mathematical equation (expressed 
using x and y), along with an example of where such a relationship can be found in science.

Figure 9.19 shows a proportional relationship (or a directly proportional relationship). This is 
a particularly common relationship in science and is discussed in detail in Chapter 5 Working 
with proportionality and ratio. The graph shows a straight line that passes through the origin. 
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An example of this is a resistor that follows Ohm’s Law, in which the current through it is 
proportional to the potential difference applied across it. This means that, for example, if the 
potential difference is doubled then the current also doubles.

Figure 9.20 shows a linear relationship. This is similar to a proportional relationship in that 
the graph shows a straight line, but here it does not pass through the origin. An example of 
this is Hooke’s Law, in which the total length of a spring increases linearly with the force 
exerted on it. This means that equal increases in force produce equal increases in the length of 
the spring. The intercept on the vertical axis is the length of the spring when the force on it 
is zero, i.e. the ‘normal’ length of the spring.

Note that the general equation for a proportional relationship is often written as y kx, 
where k is the constant of proportionality. In Figure 9.19 it is written as y mx, in order to 
emphasise the similarity to the general equation for a linear relationship, y mx c, as shown 
in Figure 9.20. A proportional relationship is a special case of a linear relationship in which 
c 0. Since c is the intercept on the vertical axis, this means that, when it is zero, the line 
passes through the origin.

Figure 9.19 Proportional relationship: y =y mx
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In Figure 9.20, the length of the spring is plotted on the vertical axis; subtracting its ‘normal’ 
length from these values gives the extension of the spring. Plotting these values would ‘shift 
the line down’ so that it passes through the origin. Instead of a linear relationship, this would 
then represent a proportional relationship. Extension is proportional to force and when there 
is no force the extension is zero.

Figure 9.21 shows a square relationship. Note here that the graph on the left includes both 
positive and negative values of x, while the science example just shows the right side of the 
graph representing only positive values. The example here is the relationship between the 
kinetic energy of an object and its speed (for which negative values would have no real-world 
meaning). This relationship is not linear: the line on the graph is curved, and it shows that 
the kinetic energy increases more rapidly than the speed.

Figure 9.22 shows an inversely proportional relationship (or an inverse relationship). This 
kind of relationship is also discussed in Chapter 5 Working with proportionality and ratio. 
Again, note that the graph on the left shows both positive and negative values of x. An 
example in science is the relationship between the volume and pressure of a fixed mass of gas. 
The inverse relationship means that, for example, if the pressure is doubled then the volume is 
halved. Note that, as the pressure is increased, the volume gets smaller and smaller but never 
reaches zero (it would if the pressure were infinite but this is impossible). On the graph, 
therefore, the curve gets closer and closer to the horizontal axis but never actually meets it. 
(The technical term for the line to which a curve is tending is an asymptote.)

Figure 9.23 shows an exponential relationship. The rising curve on the graph looks similar 
to the curve for the square relationship but, in fact, an exponential curve rises much more 
rapidly than a square relationship does. Exponential relationships are found whenever the rate 
of change of a quantity is proportional to the quantity itself. For example, if the numbers of 
bacteria double every hour then, starting with 1 bacterium, there would be just 2 at the end 
of the first hour. In the fifth hour, there would be 16 at the start which would rise to 32. This 
leads to very rapid growth – if they continue to increase like this then there would be over 
16 million at the end of 24 hours. In reality, there would be limits to the growth of increasing 
numbers of bacteria so, unlike the graph on the left, the curve cannot go on rising forever.

Figure 9.21 Square relationship: y =y ax2xx
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In the case of bacterial growth, the exponent x in the equation y ax is greater than 1 and 
the change is an example of exponential growth. In radioactive decay, the rate of decay is 
proportional to the amount of radioactive material remaining but in this case the exponent is 
smaller than 1. The graph slopes downwards, rapidly at first and then slowly approaching the 
horizontal axis. This is an example of exponential decay.

Figure 9.24 shows an inverse square relationship. This is similar in shape to the inverse 
relationship but the decrease towards the horizontal axis is rather steeper in this case. An 
example is the way that the intensity (or irradiance) of light from a lamp decreases as you 
move away from the lamp. Again, the curve approaches the horizontal axis but never meets 
it. So, as you move away from a lamp, the light intensity falls quite steeply but theoretically 
would never drop to zero, no matter how far you moved away.

Figure 9.22 Inversely proportional relationship:
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Figure 9.23 Exponential relationship: y =y ax
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9.12 Graphs of quantities against time: gradients
A line graph shows the relationship between two variables. The way the line rises or falls tells 
us about how fast or slow the change is – i.e. about the rate of change of one variable with 
another. This section looks at line graphs that show changes over time (i.e. time is the variable 
on the horizontal axis); such line graphs tend to be the easiest to interpret because the way we 
talk about the horizontal axis on a graph often reflects a sense of ‘one thing happening after 
another’ in going from left to right. However, the principles discussed here apply to any kind 
of a line graph.

Figure 9.25 shows two graphs that represent a bath filling with water. In Figure 9.25a, the 
bath starts with 50 litres of water (the intercept on the vertical axis) and reaches 200 litres 
after 10 minutes. The straight line shows that the bath is filling up at a constant rate. In 
Figure 9.25b, the bath also starts with 50 litres and reaches 200 litres after 10 minutes, but 
here it is not filling up steadily – the rate changes. At the beginning it fills up more quickly, 
and then slows down towards the end.

Figure 9.25 Graphs of quantities against time: a bath filling with water
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The gradient of the line represents the rate of change. Pupils need to be able to calculate the 
gradient of a line on a graph plotted by hand on graph paper. Figure 9.26a shows how this is 
done for a straight line graph. Finding the gradient involves finding the value for the change 
in the quantity on the horizontal axis and the corresponding change in the quantity on the 
vertical axis, and then dividing one by the other. The changes in the quantities can be found 

Figure 9.24 Inverse square relationship:
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by drawing a triangle, as shown in Figure 9.26a. It is always best to draw the triangle as large 
as possible (so that the values can be measured more accurately), while at the same time 
choosing a convenient value along the horizontal (in this case 10 minutes).

If pupils have drawn a line of best fit, they need to understand why drawing a triangle on the 
fitted line to calculate a gradient is better than just using the two extreme data points. Each 
of the data points is subject to measurement uncertainty, so the fitted line is the ‘best guess’ 
of the nature of the relationship.

The change along the vertical axis is 150 litres (200 litres  50 litres). The gradient is then 
found by dividing the vertical value by the horizontal value:

150 litresgradient 15 litres/minute
10 minutes

The gradient represents the rate at which water is flowing into the bath. In this example, the 
flow rate is constant: 15 litres are added to the bath every minute.

In the other example, shown in Figure 9.26b, the gradient of the curve changes over time. 
For example, the rate of change is greater at 3 minutes than at 7 minutes. This can be 
emphasised by drawing a tangent to the curve at each of these points. The gradient of the 
tangent at 3 minutes is steeper than the one at 7 minutes.

Figure 9.26 Finding the value of a rate by calculating the gradient of a line
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To draw a tangent by hand at a particular point on the curve, it is best to first mark this point 
on the curve. A ruler can then be positioned so that it passes through this point, with the 
curve on either side of this point sloping away from the ruler.

The gradients of these tangents can be calculated in the same way as before, by drawing a 
conveniently sized triangle, as shown in Figures 9.26c and 9.26d. The values of the gradient 
work out, in fact, at 21 litres/minute and 9 litres/minute respectively.
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Drawing a tangent to a curve and calculating the gradient gives an instantaneous rate of 
change, i.e. the rate at that particular instant in time. It is not the same as the average (mean) 
rate up to that point in time. This would be found by dividing the total change in volume by 
the total time elapsed. It is important to make this distinction between instantaneous rate of 
change and average rate of change.

A similar distinction is important in the case of a graph of potential difference (V ) against 
current (I) for a non-ohmic component, such as a filament bulb. Since it does not follow 
Ohm’s Law, it is not a straight line graph but a curve. The resistance (R) of the component 
at any point is found by dividing the value of V by the value of I (R V/I). However, it is 
sometimes believed, incorrectly, that it is the gradient at a point on the curve that gives the 
resistance (R) at that point. This is not the resistance but is the instantaneous rate of change of 
V with I (the change in V divided by the change in I). For a resistor that follows Ohm’s Law, 
the graph is a straight line passing through the origin: calculating the gradient of the line 
gives the same value as calculating V/I for any pair of points along it.

9.13 Graphs of rates against time: area under the line
The previous section showed how it was possible to calculate a gradient at any point along 
a line. Suppose that this is done for a series of points along each of the lines in the graphs 
shown earlier in Figure 9.25. These gradients represent the rate of change of the volume of 
water in the bath at each of these points in time (i.e. the rate of flow of the water). If these 
values are then plotted against time, the line graphs obtained are shown in Figure 9.27.

The first of these graphs (Figure 9.27a) shows a horizontal straight line. This represents a 
constant rate of flow of water, with a value of 15 litres/minute.

The second graph (Figure 9.27b) also shows a straight line but here it slopes downwards. The 
flow rate starts at a high value (30 litres/minute) and then drops to zero after 10 minutes. 
Since it is a straight line, it means that the rate of flow decreases at a constant rate over this 
period of time. What we are talking about here is a rate of change of a rate of change – quite 
a complex idea! This idea is quite commonly encountered in 11–16 science, though in a 
different context: an acceleration is a rate of change of a rate of change of displacement (see 
Section 10.7 Gradients of lines on speed–time and velocity–time graphs on page 116).

Figure 9.27 Graphs of rates against time: a bath filling with water
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The previous section also showed how it is possible to use a graph showing a quantity plotted 
against time to calculate a rate of change of the quantity. It is also possible to go ‘backwards’. In 
other words, it is possible to use a graph showing a rate of change of a quantity plotted against 
time to calculate the quantity.
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Suppose we want to find the volume of water added to the bath between 3 minutes and 
7 minutes. The graph in Figure 9.28a shows this period of time for the ‘constant flow’ bath. 
From this we can see that water flowed at a rate of 15 litres/minute for 4 minutes. To obtain 
the volume of water added in this time, we multiply these two values together, giving a total 
of 60 litres.

One way of thinking about this calculation is that it is the same as calculating the area of 
the shaded rectangle, i.e. the area under the line on the graph. In fact, for any line graph 
where the line represents the values for a rate of change of a quantity, the area under the line 
represents the value of the quantity.

Figure 9.28 Finding the value of a quantity by calculating the area under a line
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This idea, of calculating the area under the line on a graph also applies to the bath that is 
being filled with a changing rate of flow of water. This is shown in Figure 9.28b. Here, it is 
not quite so straightforward to calculate the area because it is not a rectangle. 

One way of doing this is to split the area into two parts – a rectangle with a triangle on 
the top. The areas of these can then be found separately and added together. (The area of a 
right-angled triangle is one half of the area of a rectangle with the same base and height; see 
Section 10.2 Length, area and volume on page 108 for the formula to calculate the area of a 
right-angled triangle.) 

Another way of doing this is to multiply the mean rate of flow by the time. On this graph, 
the mean rate of flow is the value at 5 minutes (it is the mean of the values at 3 and 
7 minutes). This is equivalent to calculating the shape of the whole shaded area, which is a 
trapezium; pupils learn about calculating the area of a trapezium in mathematics.

Both of the graphs in Figure 9.28 are straight line graphs. If the graph had shown a curve 
then the area under the curve would still have the same meaning, though finding it would be 
less straightforward. One technique, if the graph is plotted on graph paper, is to estimate the 
numbers of large and small grid squares that are under the curve, and add up the areas.

Talking about baths filling with water is a concrete way of thinking about these ideas. In 
11–16 science, however, pupils more often use calculations of the ‘area under a line’ in the 
context of velocity–time graphs (or speed–time graphs). These are discussed in more detail in 
Section 10.8 Area under the line on speed–time and velocity–time graphs on page 118.


